

Installation Guide

Water-cooled CenTraVac™ Chillers Model CVHM

Disassembly and Reassembly

X39641319004

A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

Introduction

Read this manual thoroughly before operating or servicing this unit.

Warnings, Cautions, and Notices

Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

The three types of advisories are defined as follows:

AWARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

▲CAUTION

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

NOTICE

Indicates a situation that could result in equipment or property-damage only accidents.

Important Environmental Concerns

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs and HCFCs such as saturated or unsaturated HFCs and HCFCs.

Important Responsible Refrigerant Practices

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

A WARNING

Proper Field Wiring and Grounding Required!

Failure to follow code could result in death or serious injury.

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state/national electrical codes.

A WARNING

Personal Protective Equipment (PPE) Required!

Failure to wear proper PPE for the job being undertaken could result in death or serious injury. Technicians, in order to protect themselves from potential electrical, mechanical, and chemical hazards, MUST follow precautions in this manual and on the tags, stickers, and labels, as well as the instructions below:

- Before installing/servicing this unit, technicians MUST put on all PPE required for the work being undertaken (Examples; cut resistant gloves/sleeves, butyl gloves, safety glasses, hard hat/bump cap, fall protection, electrical PPE and arc flash clothing). ALWAYS refer to appropriate Safety Data Sheets (SDS) and OSHA guidelines for proper PPE.
- When working with or around hazardous chemicals, ALWAYS refer to the appropriate SDS and OSHA/GHS (Global Harmonized System of Classification and Labelling of Chemicals) guidelines for information on allowable personal exposure levels, proper respiratory protection and handling instructions.
- If there is a risk of energized electrical contact, arc, or flash, technicians MUST put on all PPE in accordance with OSHA, NFPA 70E, or other country-specific requirements for arc flash protection, PRIOR to servicing the unit. NEVER PERFORM ANY SWITCHING, DISCONNECTING, OR VOLTAGE TESTING WITHOUT PROPER ELECTRICAL PPE AND ARC FLASH CLOTHING. ENSURE ELECTRICAL METERS AND EQUIPMENT ARE PROPERLY RATED FOR INTENDED VOLTAGE.

©2022 Trane CVHM-SVN001D-EN

A WARNING

Follow EHS Policies!

Failure to follow instructions below could result in death or serious injury.

- All Trane personnel must follow the company's Environmental, Health and Safety (EHS) policies when performing work such as hot work, electrical, fall protection, lockout/ tagout, refrigerant handling, etc. Where local regulations are more stringent than these policies, those regulations supersede these policies.
- Non-Trane personnel should always follow local regulations.

A WARNING

Refrigerant May Be Under Positive Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains refrigerant and may be under positive pressure; system may also contain oil. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or non-approved refrigerant additives.

NOTICE

Equipment Damage!

Mixing refrigerants or oils could result in equipment damage including bearing damage, introduction of acids into the chiller, or continuous purge pump-out in high-head/high ambient applications.

CenTraVac™ chillers are manufactured with different refrigerant/oil systems: 1) chillers using R-123 refrigerant and OlL00022 compressor oil, and 2) chillers using R-514A refrigerant and various Trane POE-based compressor oils. Always verify proper refrigerant and oil for your chiller. Do NOT mix refrigerants and oils.

This Installation, Operation, and Maintenance manual applies to model CVHM CenTraVac chillers with R514A refrigerant and Trane OIL00381/OIL00382 compressor oil.

Important: Verify proper refrigerant and oil for your chiller before proceeding!

Factory Warranty Information

Compliance with the following is required to preserve the factory warranty:

All Unit Installations

Startup MUST be performed by Trane, or an authorized agent of Trane, to VALIDATE this WARRANTY. Contractor must provide a two-week startup notification to Trane (or an agent of Trane specifically authorized to perform startup).

Additional Requirements for Units Requiring Disassembly and Reassembly

When a new chiller is shipped and received from our Trane manufacturing location and, for any reason, it requires disassembly or partial disassembly, and reassembly— which could include but is not limited to the evaporator, condenser, control panel, compressor/motor, economizer, purge, factory-mounted starter or any other components originally attached to the fully assembled unit— compliance with the following is required to preserve the factory warranty:

- Trane, or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products, will perform or have direct on-site technical supervision of the disassembly and reassembly work.
- The installing contractor must notify Trane—or an agent of Trane specifically authorized to perform startup and warranty of Trane® products—two weeks in advance of the scheduled disassembly work to coordinate the disassembly and reassembly work.
- Start-up must be performed by Trane or an agent of Trane specifically authorized to perform startup and warranty of Trane® products.

Trane, or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products, will provide qualified personnel and standard hand tools to perform the disassembly and reassembly work at a location specified by the contractor. The contractor shall provide the rigging equipment such as chain falls, gantries, cranes, forklifts, etc. necessary for the disassembly and reassembly work and the required qualified personnel to operate the necessary rigging equipment.

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Revision History

Updated Notices and Refrigerant oil types for R-514A chiller.

Table of Contents

Components and Weights 6	Tracer AdaptiView Display Arm	
Components 6	Removal	14
Maximum Component Weights 9	Compressor Motor Assembly	14
Disassembly10	Economizer Removal	17
	Condenser/Evaporator Disassembly	18
General Information		
Contractor Responsibilities 10	Reassembly	20
Wiring Disassembly 11	Tightening Flanges	
	Flanges with 8 or 12 Bolts	21
Adaptive Frequency Drive	Flanges with 16 Bolts	
Purge Unit Removal	Brazing	25
Control Panel Removal	brazing	20
	Final Installation Procedures	23

Components and Weights

Important: All fasteners are metric except waterbox and oil system hardware.

Note: Use only new O-rings and gaskets. Do NOT reuse O-rings or gaskets.

Figure 1. CVHM components (page 1 of 2)

Components

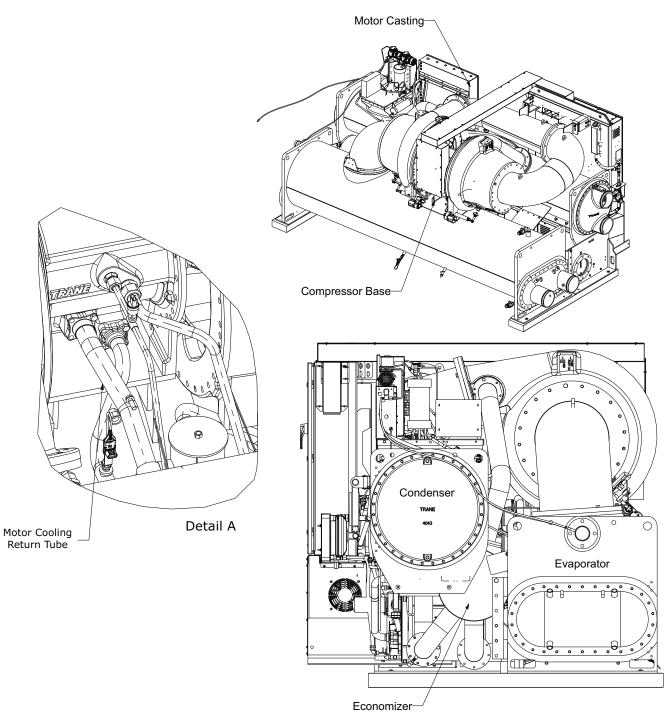
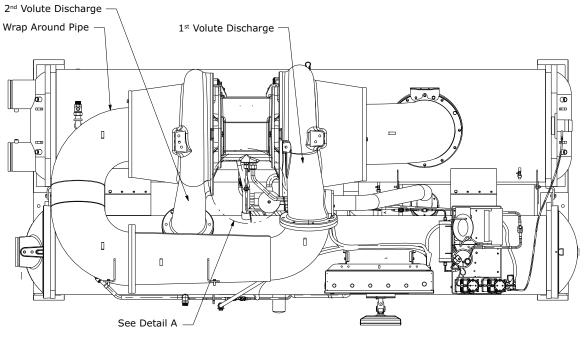
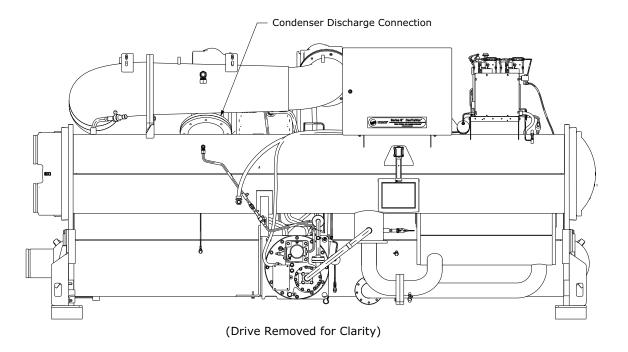
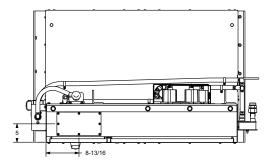
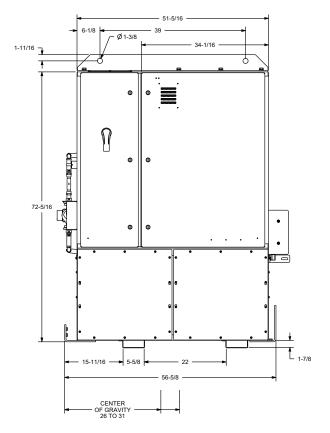
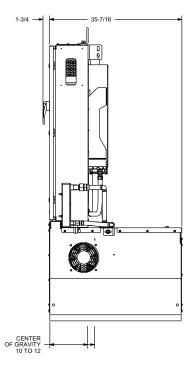




Figure 2. CVHM components (page 2 of 2)


(Drive Removed for Clarity)





Components and Weights

Figure 3. CVHM drive dimensions, in.

Note: The holes on the top of the drive can be used for lifting the drive.

Components and Weights

Maximum Component Weights

Important: The weight information provided here should be used for general information only. Trane does not recommend using this weight information for considerations relative to chiller handling, rigging, or placement. The large number of variances between chiller selections drives variances in chiller weights that are not recognized in these tables. For specific weights for your chiller, refer to your submittal package.

Table 1. Maximum CVHM unit component weights

Component	Maximum Weight		
Component	(Ib)	(kg)	
Condenser without waterboxes	4253	1934	
Condenser waterboxes	923	420	
Evaporator without waterboxes	6095	2771	
Evaporator waterboxes	776	353	
Economizer	348	159	
Compressor	5467	2561	
Compressor wrap pipe	770	350	

Table 1. Maximum CVHM unit component weights (continued)

Commonant	Maximum Weight	
Component	(Ib)	(kg)
Compressor suction elbow	361	164
Control panel	88	40
Purge	165	75
Oil system	513	233
Drive	1900	862
Wire tray with lid	57	26
Shipping (Estimated)	23593	10639
Shipping without drive (Estimated)	21678	9833
Operating (Estimated)	26728	12060

Important: Two M20 swivel D-rings are required for lifting the compressor assembly (metric threads).

Note: Wrap pipe requires three 5/8-in. shackles. Trane recommends using Crosby screw pin shackles, model S-209, stock number 1018482 with 5/8-in. pin.

Disassembly

General Information

A WARNING

Refrigerant May Be Under Positive Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains refrigerant and may be under positive pressure; system may also contain oil. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or non-approved refrigerant additives.

NOTICE

Equipment Damage!

Mixing refrigerants or oils could result in equipment damage including bearing damage, introduction of acids into the chiller, or continuous purge pump-out in high-head/high ambient applications.

CenTraVac™ chillers are manufactured with different refrigerant/oil systems: 1) chillers using R-123 refrigerant and OIL00022 compressor oil, and 2) chillers using R-514A refrigerant and various Trane POE-based compressor oils. Always verify proper refrigerant and oil for your chiller. Do NOT mix refrigerants and oils.

This Installation, Operation, and Maintenance manual applies to model CVHM CenTraVac chillers with R514A refrigerant and Trane OIL00381/OIL00382 compressor oil.

Important: Verify proper refrigerant and oil for your chiller before proceeding!

Important: Remove the nitrogen charge from the chiller vessel before starting any disassembly procedures.

Note: New units ship with a 5 psig (34.5 kPag) dry nitrogen holding charge at nominal 72°F (22°C).

Important: New units that have been factory run-tested contain residual refrigerant; vent discharge outdoors

Check to make sure there is a positive pressure holding charge.

Contractor Responsibilities

A WARNING

Heavy Objects!

Failure to follow instructions below could result in component dropping which could result in death or serious injury, and equipment or property-only damage.

Loads can shift and become off-center during shipping. Ensure that components are centered before lifting and always test lift each component to verify center of gravity using lifting equipment rated for the task. Only experienced riggers should perform unit disassembly/reassembly.

NOTICE

Equipment Damage!

Failure to remove the strain relief with the sensor could result in equipment damage.

Do NOT attempt to pull sensor bulb through the strain relief; always remove the entire strain relief with the sensor.

- · Handle/lift and rig equipment
- Protect all internal components from exposure to elements, which could contaminate or corrode chiller components
- Chiller reassembly
- Replace all gaskets with new gaskets or O-rings and sealing compound; the contractor should assist a qualified Trane Technician with this responsibility

NOTICE

Compressor Damage!

that has been opened.

POE oil is hygroscopic – it absorbs water directly from the air. This water is nearly impossible to remove from the compressor oil and can result in compressor failures.

To prevent POE oil from absorbing water, the system should not remain open for longer than necessary. When open, dry nitrogen should flow through the piping. Only new oil containers should be used for service and maintenance. Always use the smallest container size required for the job requirements. Always leave the oil container

tightly sealed until time of use. Do not reuse oil

 Change the compressor oil; the contractor should assist a qualified Trane Technician with this responsibility

- Evacuate the chiller under 1000 microns; the contractor should assist a qualified Trane Technician with this responsibility
- Recharge the chiller with dry nitrogen to 5 psig; the contractor should assist a qualified Trane Technician with this responsibility
- Replace and/or repair insulation
- Reconnect electrical connections
- Spot paint the chiller if necessary

The disassembly and reassembly procedures described in this manual should be performed only on chillers that have been ordered with this shell option. The process is to be initiated by experienced service technicians. Contact your local Trane Service office for assistance if required.

This manual discusses a typical disassembly process. Proper lifting techniques vary based on mechanical room layout.

- It is the responsibility of the person(s) performing the work to be properly trained in the safe practice of rigging, lifting, securing, and fastening the components involved.
- It is the responsibility of the person(s) providing and using the rigging and lifting devices to inspect these devices to ensure they are free from defect and are rated to meet or exceed the published weights.
- Always use rigging and lifting devices in accordance with the applicable instructions for such devices.
- Cap or cover open lines to prevent entry of foreign material.

Note: Additional O-rings and couplings are shipped with the chiller when the separable shell kit is selected.

Also refer to wiring diagram 2311-4146*.

Wiring Disassembly

Before separating shells, remove the purge, the compressor, wrap pipe, economizer line, control panel, and the various unit mounted sensors (frame LLIDs) as indicated. If possible, the best method is to remove the sensor and carefully coil the wire after labeling the device and its location to aid in reinstallation. All sensors connect to the buss wiring with a universal plug. This allows easy disconnection and reconnection of the sensors.

Adaptive Frequency Drive

If you need to temporarily remove the entire Adaptive Frequency™ Drive (AFD) cabinet from the chiller to allow unit installation through restricted spaces or the AFD cabinet shipped disassembled from the chiller, use the following general information and instructions. The

maximum weight of the drive is 1900 lb (862 kg).

Note: For specific weights of the AFD cabinet, refer to submittal package.

A WARNING

Heavy Object!

Failure to follow instructions below could result in unit dropping which could result in death or serious injury, and equipment or property-only damage.

Ensure that all the lifting equipment used is properly rated for the weight of the unit being lifted. Each of the cables (chains or slings), hooks, and shackles used to lift the unit must be capable of supporting the entire weight of the unit. Lifting cables (chains or slings) may not be of the same length. Adjust as necessary for even unit lift.

A WARNING

Improper Unit Lift!

Failure to properly lift unit in a LEVEL position could result in unit dropping and possibly crushing operator/technician which could result in death or serious injury, and equipment or property-only damage.

Test lift unit approximately 24 inches (61 cm) to verify proper center of gravity lift point. To avoid dropping of unit, reposition lifting point if unit is not level.

- Remove the AFD upper support bracket bolts at the wrap-around pipe side. There are two bolts in each bracket.
- Close the isolation valves for the AFD cooling lines, both feed and return.

A WARNING

Explosion Hazard and Deadly Gases!

Failure to follow all proper safe refrigerant handling practices could result in death or serious injury.

Never solder, braze or weld on refrigerant lines or any unit components that are above atmospheric pressure or where refrigerant may be present. Always remove refrigerant by following the guidelines established by the EPA Federal Clean Air Act or other state or local codes as appropriate. After refrigerant removal, use dry nitrogen to bring system back to atmospheric pressure before opening system for repairs. Mixtures of refrigerants and air under pressure may become combustible in the presence of an ignition source leading to an explosion. Excessive heat from soldering, brazing or welding with refrigerant vapors present can form highly toxic gases and extremely corrosive acids.

A WARNING

Refrigerant May Be Under Positive Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains refrigerant and may be under positive pressure; system may also contain oil. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved

Important: Any unit pressure must be relieved before disconnecting refrigerant lines. The units ship from the factory with a 5 psi dry nitrogen holding charge.

refrigerants, refrigerant substitutes, or non-

approved refrigerant additives.

- Disconnect the AFD cooling lines at the bottom of the elbows coming out of the chill plate, both feed and return. Cap the lines and chill plate elbows to prevent debris from entering the system.
- Mark and disconnect the motor power wires at the drive output terminals and inside motor junction box. There will be six power wires and two ground wires.

Note: Always compare the wire connections to the as-built wiring diagrams to assure the schematics match the actual connections.

Make notes as necessary to assure the wires are reconnected to the same locations.

- Remove wire tray covers and completely remove wires from wire tray. Disassemble and remove the wire tray by unbolting the tray at the compressor junction box and then removing the screws from support bracket on the AFD cabinet.
- Mark and disconnect the high pressure cutout switch wires at the terminal block and pull the cable out of the AFD cabinet.
- Mark and disconnect the wires that run between the drive and the control panel at the drive and pull the conduit out of the AFD cabinet.
- Mark and disconnect the oil/refrigerant pump wires from the terminal block and pull conduit out of the AFD cabinet.
- Mark and disconnect drive communication cable at terminal block and pull the cable out of the AFD cabinet.
- Support the weight of the AFD cabinet with a fork truck or another suitable lifting device (minimum 2ton rated capacity).
- 11. Loosen and remove the bolts that secure the AFD cabinet to the lower mounting brackets. Unhook the right side at the L-bracket welded to the condenser, four bolts total. Unhook the left side at the

condenser support leg, four bolts and nuts total.

12. Carefully lift the AFD cabinet away from the chiller. Do not bump or jolt the AFD while lifting.

Important: In cases where the unit is being installed through restricted spaces, the oil tank filter may need to be temporarily removed. Prior to removal of the filter, switch the regulator to the "change filter" setting. After the filter has been removed from the regulator block, the opening must be sealed to ensure no contaminates are allowed into the system. Due to the hygroscopic nature of the oil, install a new filter after the chiller has passed through the restricted space.

Installation of the AFD cabinet is essentially the reverse of the removal procedure. All mounting bolts should be torqued to ANSI standards based on the bolt diameter. The motor power wires connecting to the drive output terminals should be torqued according to the label inside the AFD cabinet. Tighten the power wires that connect to the AFD terminal block to 8.3 ft-lb (11.3 N-m). The motor powers wires connecting to the motor terminals inside the compressor motor junction box shall be torqued between 20–26 ft-lb. Torque the corresponding ground cables inside the compressor motor junction box to 38 ft-lb. Refer to the as-built wiring diagrams for connection locations.

Purge Unit Removal

approved refrigerant additives.

A WARNING

Refrigerant May Be Under Positive Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains refrigerant and may be under positive pressure; system may also contain oil. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or non-

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.

To remove the purge assembly from the top of the condenser:

- 1. Isolate the purge unit from the condenser shell by closing the vapor and liquid line valves.
- 2. Disconnect and mark all piping and wiring attached to the purge unit. Sand all paint off at points and use a tubing cutter where cuts are to be made. See Figure 4, p. 13, and Figure 5, p. 13.
- 3. Remove the fasteners connecting the purge unit base to its mounting bracket.
- 4. Two people will be needed to lift purge unit clear of the chiller. Refer to Table 1, p. 9 for purge unit weight. Store the purge unit in a clean dry area.

Reassemble the purge unit in reverse order when the process is complete.

Figure 4. Purge unit

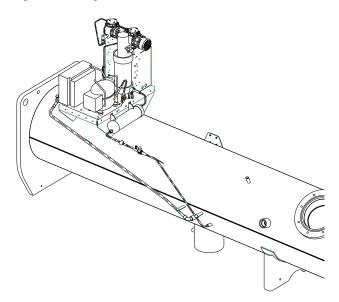
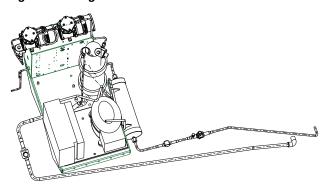



Figure 5. Purge unit detail

Control Panel Removal

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.

Use the following steps to remove the control panel if additional horizontal clearance is required.

Note: The control panel can be rotated back and downward on two mounting bolts with wiring remaining intact.

- Mark and disconnect incoming wiring to the control panel.
- Remove the four bolts from the bottom of the panel which secure the panel to the lower mounting brackets.
- 3. Loosen the two bolts on the back of the panel which secure the panel to the top mounting brackets. See Figure 6, p. 14.

Disassembly

Figure 6. Control panel mounting brackets

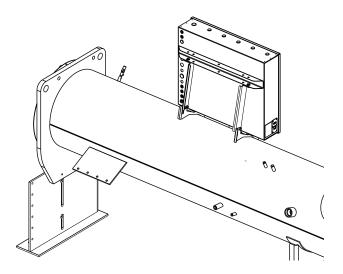
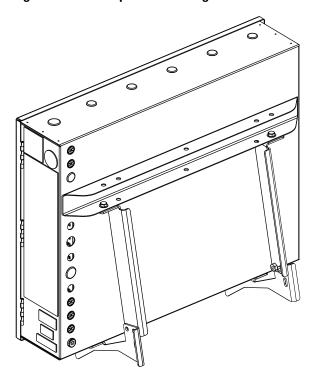



Figure 7. Control panel mounting brackets details

- 4. Two people will be needed to lift the panel clear of the chiller. Refer to Table 1, p. 9 for control panel weight. Steady the panel as the top retaining bolts are removed. Then lift the panel clear. Store the panel in a clean dry area.
- 5. Use the reverse order to reassemble the control panel.

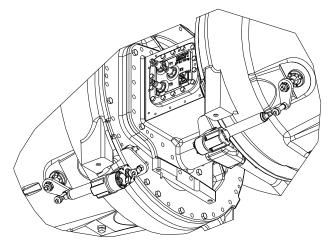
Tracer AdaptiView Display Arm Removal

A WARNING

Hazardous Voltage w/Capacitors!

Failure to disconnect power and discharge capacitors before servicing could result in death or serious injury.

Disconnect all electric power, including remote disconnects and discharge all motor start/run capacitors before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized. For variable frequency drives or other energy storing components provided by Trane or others, refer to the appropriate manufacturer's literature for allowable waiting periods for discharge of capacitors. Verify with a CAT III or IV voltmeter rated per NFPA 70E that all capacitors have discharged.


Use the following steps to remove the Tracer AdaptiView[™] display arm if additional clearance is required.

- 1. Cut tie wraps holding wires inside of control arm and remove wires from arm.
- Remove four bolts from the angle bracket attached to the control panel mounting bracket.
- 3. Use the reverse order to re-attach the arm to the control panel mounting bracket.

Compressor Motor Assembly

- 1. Disconnect the vane actuators.
 - a. Remove the cotter pins and washers securing the vane operator studs to the vane drive and slide the vane actuators off the mounting studs.
 - b. Mark each actuator "right" or "left," accordingly, and replace in the correct location.

Figure 8. Vane actuator and operator details

A WARNING

Refrigerant May Be Under Positive Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains refrigerant and may be under positive pressure; system may also contain oil. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or non-approved refrigerant additives.

 Disconnect motor cooling, oil supply, and drain lines that are connected to the compressor.
 Couplings will be used to reconnect the lines when reassembling the chiller. Cap or cover open lines to prevent entry of foreign material.

Note: Cover all open connections to avoid prolonged exposure of oil to humid air.

Remove oil if a chiller is kept in a disassembled condition for an extended time.

Figure 9. Lubrication system

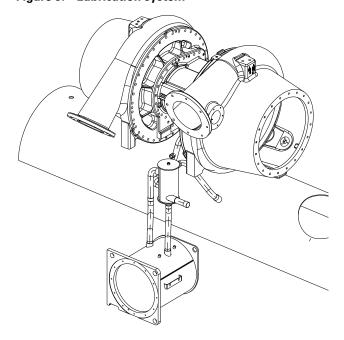
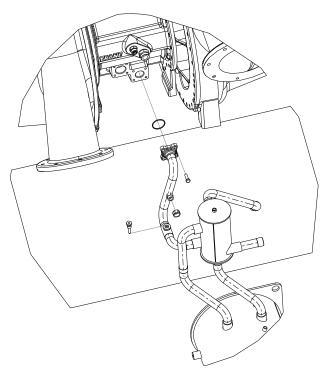



Figure 10. Lubrication system detail

- Remove the control panel if necessary. Also, disconnect and remove the unit mounted starter, if so equipped. See "Control Panel Removal," p. 13 for instructions.
- Remove the economizer vent pipe flange bolts at the compressor and economizer connection. See "Economizer Removal," p. 17 for instructions.

A WARNING

Heavy Object!

Failure to follow instructions below could result in unit dropping which could result in death or serious injury, and equipment or property-only damage.

Ensure that all the lifting equipment used is properly rated for the weight of the unit being lifted. Each of the cables (chains or slings), hooks, and shackles used to lift the unit must be capable of supporting the entire weight of the unit. Lifting cables (chains or slings) may not be of the same length. Adjust as necessary for even unit lift.

 Before removing the compressor/motor assembly, consult with a rigging specialist. Employ rigging specialist procedures when removing the compressor motor/assembly.

Important: Two M20 swivel D-rings are required for lifting the compressor assembly (metric threads).

Disassembly

A WARNING

Improper Unit Lift!

Using the elbow lifting tab to lift chiller could result in chiller dropping which could result in death, serious injury, or equipment damage.

- Do NOT lift chiller using elbow lifting tab. Elbow lifting tab and approved clevis are used ONLY when removing elbow from chiller.
- Do not lift chiller utilizing waterbox lifting lug. Waterbox lifting lug is to be used only for removing waterbox from chiller.
- 6. Remove the suction elbow.
 - a. The suction elbow has lifting tabs. You will need a lifting clevis to remove the elbow. A Crosby screw pin shackle, model S-209, stock number 1018482 with a 5/8-in. pin is acceptable as shown in Figure 11, p. 16.

Figure 11. Lifting clevis on the suction elbow lifting tab

- b. Remove the suction elbow bolts at the compressor and evaporator connections.
- c. Lift the suction elbow from the chiller being careful to avoid damage to flange surfaces.

Note: Compressor assembly can be removed with wrap pipe still installed.

- d. Unbolt the economizer vent pipe at the first stage volute connection and at the economizer connection.
- e. The two-piece wrap pipe has four lifting tabs. You will need three lifting clevises to remove the pipe. A Crosby screw pin shackle, model S-209, stock number 1018482 with a 5/8-in. pin is acceptable as shown in Figure 11, p. 16.
- f. Remove the first stage discharge volute bolts and the second stage suction bolts.
- 7. If required by installation dimension constraints, remove the two-piece wrap pipe. The wrap pipe can be disassembled at the mid-flange joint.
 - a. Lift the wrap pipe from the chiller, being careful to avoid damaging flange surfaces.
 - Install protective covers on the evaporator, wrap pipe, and compressor connections. Plastic secured with duct tape makes an adequate cover if no heavy objects are set on the openings.
 - Remove the second stage volute-to-condenser bolts.
- 8. Use designated lift point for level lift.
 - a. If the wrap pipe is still on the unit, see Figure 12, p. 16.
 - b. If lifting the compressor only (no wrap pipe), see Figure 13, p. 17.

Figure 12. Wrap pipe lifting points (requires three 5/8-in. shackles to lift)

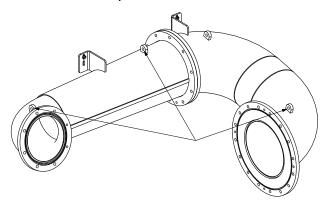


Figure 13. Compressor-only lifting points

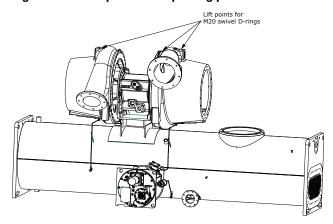
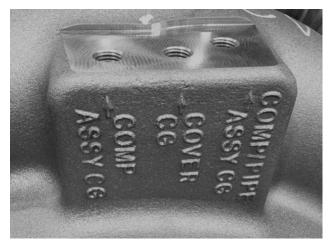



Figure 14. Casting identifies lifting points by component

 Support compressor on wood blocks or plywood to prevent damage to the compressor or wrap pipe components.

NOTICE

Equipment Damage!

Failure to follow instructions below could result in equipment damage.

The cast iron foot of the compressor and the discharge flange of the volute can be broken easily if rough handling of the compressor/motor assembly is allowed. Take great care to prevent this breakage when removing the compressor/motor assembly and setting it down, or when moving it laterally on the floor (e.g., on rollers, etc). Take extra care to gently sit the compressor/motor assembly down and avoid letting it swing or drop into an obstruction while lifting or moving it.

10. Remove the compressor/motor assembly. Remove the two locating roll pins from the compressor and/ or compressor base. Grip each pin and pull out of its hole; at this point, remove the compressor/motor assembly.

Economizer Removal

A WARNING

Refrigerant May Be Under Positive Pressure!

Failure to follow instructions below could result in an explosion which could result in death or serious injury or equipment damage.

System contains refrigerant and may be under positive pressure; system may also contain oil.

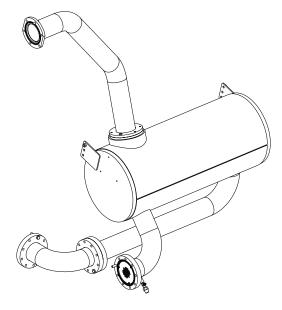
positive pressure; system may also contain oil. Recover refrigerant to relieve pressure before opening the system. See unit nameplate for refrigerant type. Do not use non-approved refrigerants, refrigerant substitutes, or non-approved refrigerant additives.

A WARNING

Heavy Object!

Failure to follow instructions below could result in unit dropping which could result in death or serious injury, and equipment or property-only damage.

Ensure that all the lifting equipment used is properly rated for the weight of the unit being lifted. Each of the cables (chains or slings), hooks, and shackles used to lift the unit must be capable of supporting the entire weight of the unit. Lifting cables (chains or slings) may not be of the same length. Adjust as necessary for even unit lift.


Use the following steps to remove the economizer if additional horizontal clearance is required.

- 1. Support the weight of the economizer with a movable floor jack. Do not lift the economizer; simply support it. Maximum economizer weights are provided in Table 1, p. 9; also see submittal.
- If the unit has insulation, remove the insulation and loosen the bolts on the condenser liquid line flange. Loosen the bolts on the evaporator liquid line flange. See Figure 15, p. 18. Do not remove the bolts at this time.

Disassembly

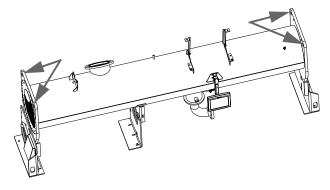
Figure 15. Evaporator-condenser-Economizer line flanges

- This connection is near the bottom of the evaporator. See Figure 15, p. 18. Do not remove the bolts at this time.
- 4. Economizers are connected to the condenser shell via a bolted flange. See Figure 17, p. 19. Remove the bolts at this flanged connection.
- Remove the economizer vent pipe flange bolts on the economizer and the vent pipe to the compressor first stage volute connection flange bolts. Remove economizer vent line (unless the compressor has already been removed to gain vertical clearance.)
- 6. Secure economizer with appropriate rigging.
- Remove the bolts from the condenser and evaporator liquid line connection flanges. Adjust the floor jack as necessary to support the weight of the economizer.
- Remove the economizer vent pipe flange bolts to loosen the economizer. When the bolts are free, back the economizer away from the chiller. The economizer may tend to rotate off the jack. Be prepared to offset the rotation.
- Move the economizer away from the chiller and set it on a pallet. Cover all openings to prevent the entry of foreign material into the economizer, condenser and compressor.
- Use the reverse order to reassemble the economizer on the chiller. Be sure to install new Orings at the appropriate joints.
- Torque all bolts to specifications. Consult with your Trane service group for specific torques for your economizer design.

Condenser/Evaporator Disassembly

After the compressor assembly has been removed on separable shell units, the condenser and evaporator shells can be taken apart at flanged connections to reduce the horizontal clearance required for the chiller installation.

A WARNING

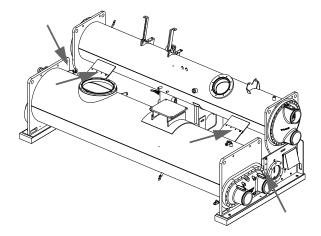

Heavy Object!

Failure to follow instructions below could result in unit dropping which could result in death or serious injury, and equipment or property-only damage.

Ensure that all the lifting equipment used is properly rated for the weight of the unit being lifted. Each of the cables (chains or slings), hooks, and shackles used to lift the unit must be capable of supporting the entire weight of the unit. Lifting cables (chains or slings) may not be of the same length. Adjust as necessary for even unit lift.

- Ensure that condenser and evaporator shells are securely supported on level ground. If not, shim under the bases.
- Support the condenser with rigging using the lifting holes on the tube sheets. See Figure 16, p. 18. Do not lift the shell, simply support it to avoid slipping as the bolts are removed from the connecting flange.

Figure 16. Separable shell unit



- 3. Remove the bolts from the flanges connecting the evaporator tube sheet and condenser shell support (see Figure 17, p. 19). Then remove the bolts from the flanges connecting the shells.
- Reassemble the evaporator and condenser shells in the reverse order.

Note: Install the top bolts first as these have limited clearance and act as dowel pins.

Torque all bolts to specifications listed in Table 2, p. 21.

Figure 17. Separable shell unit (flange connection)

Reassembly

NOTICE

Equipment Damage!

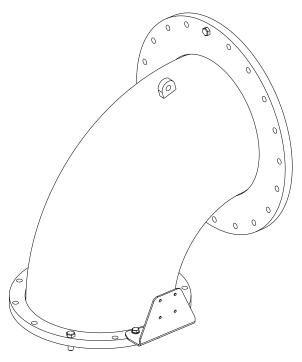
Failure to remove the strain relief with the sensor could result in equipment damage.

Do NOT attempt to pull sensor bulb through the strain relief; always remove the entire strain relief with the sensor.

It is important to remove used O-rings and gaskets and clean joints before reassembling the compressor with new O-rings. All necessary replacement O-rings are supplied by the factory when the separable shell option is ordered.

Use the following procedure to reattach the compressor/motor assembly to the chiller.

- Remove the protective covers on all compressor, condenser, evaporator, and economizer connections. Clean all mating surfaces using Loctite® "Chisel" cleaner or CRC® Industrial Gasket Remover. Completely remove old sealing compound from O-ring grooves. Use Loctite "N" primer for final surface preparation.
- 2. Refer to CTV-SB-66F (General Service Bulletin: CenTraVac O-Ring and Flange Sealant) for proper installation of gaskets, O-Rings, and Loctite sealant. Install a new O-ring on the compressor discharge connection mating surfaces. Use Loctite 515 "Gasket Eliminator" to lubricate the O-ring and provide additional sealing. This is the only sealing compound recommended by Trane for use on O-ring joints. To use this sealing compound, apply a light bead (approximately 1/8-in. in diameter) to the O-ring groove, insert the O-ring and then apply a light bead to the O-ring. Also apply a 1/8-in. bead of sealing compound between the O-ring groove and the bolt hole circle. The parts can now be assembled.


Note: Trim 3/8-in. off the 2-1/8-in. copper compressor drain line to allow clearance when reassembling.

- 3. Lift the compressor/motor assembly into place. Be sure to caulk or paint the compressor base plate to protect the bare metal. Install two new roll pins into the compressor casting. Align the pins into the compressor mounting base. Insert the bolts in the compressor base and discharge flange connections.
- Tighten the compressor base and discharge flange bolts. See Table 2, p. 21 for bolt torque specifications.
- 5. Remove the lifting equipment.
- 6. Set up dial indicators on the compressor end of the compressor/motor assembly. See Figure 18, p. 20. The dial indicators are used to monitor horizontal and vertical movement of the compressor/motor

assembly when the suction elbow retaining bolts are tightened.

Support the dial indicators from the condenser or from a floor stand.

Figure 18. Suction elbow flange bolts

For flange tightening sequences, refer to "Tightening Flanges," p. 21.

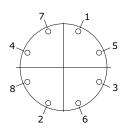
7. Clean the suction elbow flange surfaces and O-ring grooves per Step 1. For the evaporator to suction elbow joint, use Loctite 515 per Step 2. For the suction elbow to compressor joint, use 1/8-in. GORE-TEX® Joint Sealant placed approximately 1/8-in. in board of the O-ring groove. This is used in addition to the O-ring. Also use 1/8-in. GORE-TEX on wrap pipe to second stage inlet connection in the same manner as on the section elbow to compressor joint.

As an option, Loctite 515 may be used in place of GORE-TEX. However, great care must be taken to prevent the sealant from entering the first stage IGV housing. Refer to CTV-SB-66F (General Service Bulletin: CenTraVac O-Ring and Flange Sealant).

Figure 19. Installation of 1/8-in. GORE-TEX tape

- Lift the suction elbow into place using a sling or chainfall hoist.
- 9. Install the suction elbow retaining bolts.
- 10. Tighten the retaining bolts only "hand tight". Tighten two retaining bolts, 180 degrees apart at the compressor connection. Then tighten two bolts, 180 degrees apart at the evaporator connection. Alternate between connections until all retaining bolts are tight. Monitor the dial indicators to ensure that there is no more than 0.010 inches of compressor movement. If there is more movement than this, loosen all of the bolts, "zero" the dial indicators and repeat the procedure. Refer to "Tightening Flanges," p. 21 for bolt tightening sequences.
- 11. Reconnect the economizer vent pipe. Be sure to clean the mating surfaces and use new O-rings on the connections. Tighten first stage volute and economizer top flange bolts; refer to Table 2, p. 21 and "Tightening Flanges," p. 21.
- 12. Reinstall all other chiller components which were removed.
- Torque all bolts to specifications listed in Table 2, p. 21.

Table 2. Bolt torques for waterbox mounting


Bolt Size		Torque	
(in.)	(mm)	(ft·lb)	(N·m)
1/2	13	70-100	95-136
5/8	16	130-190	176-258
Metric Bolt Size (Non-Gasketed Joints or O-ring Joints)			
Polt C	izo (in)	Torque (ft·lb)	
Boiles	Bolt Size (in)	(ft·lb)	(N·m)
ı	48	12-16	16-22
M	110	24-33	33-45
M	112	48-65	65-89
M	116	130-179	177-243
M	120	239-334	324-453

14. Reconnect the previously cut compressor supply and return lines, oil supply and return lines, and the motor cooling lines using the factory-supplied couplings.

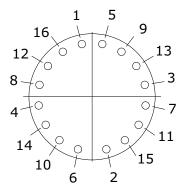
Tightening Flanges

Flanges with 8 or 12 Bolts

Tighten all bolts to a snug tightness, following the numerical sequence for the appropriate bolt pattern as shown below. Repeat this sequence to apply the final torque to each bolt.

12 9 8 0 7 10 6 2

8 bolt flange


12 bolt flange

Flanges with 16 Bolts

Tighten only the first half of the total number of bolts to a snug tightness, following the numerical sequence for the appropriate bolt pattern as shown below. Next, sequentially tighten the remaining half of the bolts in numerical order.

Reassembly

Brazing

A WARNING

Explosion Hazard and Deadly Gases!

Failure to follow all proper safe refrigerant handling practices could result in death or serious injury.

Never solder, braze or weld on refrigerant lines or any unit components that are above atmospheric pressure or where refrigerant may be present. Always remove refrigerant by following the guidelines established by the EPA Federal Clean Air Act or other state or local codes as appropriate. After refrigerant removal, use dry nitrogen to bring system back to atmospheric pressure before opening system for repairs. Mixtures of refrigerants and air under pressure may become combustible in the presence of an ignition source leading to an explosion. Excessive heat from soldering, brazing or welding with refrigerant vapors present can form highly toxic gases and extremely corrosive acids.

Except as noted in the following, braze with the following filler metals:

- Braze all copper-to-copper joints with A.W.S. BcuP-6 filler metal.
- Braze all copper-to-brass joints with A.W.S. BcuP-6 filler metal using white or black brazing flux.
- Braze all other joints with A.W.S. Bag-28 filler metal.

Bleed dry nitrogen through the lines while brazing to prevent the formation of oxides which can contaminate the oil and refrigerant systems. Note: Use silver soldering with 96% Sn-4% Ag (for example, J.W. Harris Co. Stay Brite®) to replace brazing when the heat from brazing would be detrimental to the immediate or nearby parts.

Examples:

- Joints next to threaded joints in which the copper or brass threads become too soft and/or Loctite® loses its sealing capability due to excess heat.
- Joints next to valves in which the valves cannot be taken apart or are not recommended for brazing.

Final Installation Procedures

After the chiller has been moved to the equipment room and reassembled under Trane supervision, leak testing, and evacuation can be performed by Trane or under Trane supervision. Upon verification of leak tightness, installation can proceed for unit piping, wiring, etc. After installation has been completed, fill out CTV-ADF001*-EN (CenTraVac™ Installation Completion Check Sheet and Request for Trane Service) to schedule the startup; the chiller commissioning process can be completed by Trane or under the supervision of authorized Trane personnel.

Note: CTV-ADF001*-EN is also included in the "Forms" section of CVHM-SVX001*-EN (Installation, Operation, and Maintenance: CVHM Water-cooled CenTraVac Chillers with Tracer AdaptiView Control).

Trane - by Trane Technologies (NYSE: TT), a global innovator - creates comfortable, energy efficient
indoor environments for commercial and residential applications. For more information, please visit
trane.com or tranetechnologies.com.
Trane has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.